Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 4, 2026
-
Free, publicly-accessible full text available July 16, 2026
-
Spatial-temporal graphs are widely used in a variety of real-world applications. Spatial-Temporal Graph Neural Networks (STGNNs) have emerged as a powerful tool to extract meaningful insights from this data. However, in real-world applications, most nodes may not possess any available temporal data during training. For example, the pandemic dynamics of most cities on a geographical graph may not be available due to the asynchronous nature of outbreaks. Such a phenomenon disagrees with the training requirements of most existing spatial-temporal forecasting methods, which jeopardizes their effectiveness and thus blocks broader deployment. In this paper, we propose to formulate a novel problem of inductive forecasting with limited training data. In particular, given a spatial-temporal graph, we aim to learn a spatial-temporal forecasting model that can be easily generalized onto those nodes without any available temporal training data. To handle this problem, we propose a principled framework named ST-FiT. ST-FiT consists of two key learning components: temporal data augmentation and spatial graph topology learning. With such a design, ST-FiT can be used on top of any existing STGNNs to achieve superior performance on the nodes without training data. Extensive experiments verify the effectiveness of ST-FiT in multiple key perspectives.more » « lessFree, publicly-accessible full text available April 11, 2026
-
Graph Neural Networks Are More Than Filters: Revisiting and Benchmarking from A Spectral PerspectiveGraph Neural Networks (GNNs) have achieved remarkable success in various graph-based learning tasks. While their performance is often attributed to the powerful neighborhood aggregation mechanism, recent studies suggest that other components such as non-linear layers may also significantly affecting how GNNs process the input graph data in the spectral domain. Such evidence challenges the prevalent opinion that neighborhood aggregation mechanisms dominate the behavioral characteristics of GNNs in the spectral domain. To demystify such a conflict, this paper introduces a comprehensive benchmark to measure and evaluate GNNs' capability in capturing and leveraging the information encoded in different frequency components of the input graph data. Specifically, we first conduct an exploratory study demonstrating that GNNs can flexibly yield outputs with diverse frequency components even when certain frequencies are absent or filtered out from the input graph data. We then formulate a novel research problem of measuring and benchmarking the performance of GNNs from a spectral perspective. To take an initial step towards a comprehensive benchmark, we design an evaluation protocol supported by comprehensive theoretical analysis. Finally, we introduce a comprehensive benchmark on real-world datasets, revealing insights that challenge prevalent opinions from a spectral perspective. We believe that our findings will open new avenues for future advancements in this area.more » « lessFree, publicly-accessible full text available April 24, 2026
-
As Large Language Models (LLMs) are increasingly deployed to handle various natural language processing (NLP) tasks, concerns regarding the potential negative societal impacts of LLM-generated content have also arisen. To evaluate the biases exhibited by LLMs, researchers have recently proposed a variety of datasets. However, existing bias evaluation efforts often focus on only a particular type of bias and employ inconsistent evaluation metrics, leading to difficulties in comparison across different datasets and LLMs. To address these limitations, we collect a variety of datasets designed for the bias evaluation of LLMs, and further propose CEB, a Compositional Evaluation Bechmark that covers different types of bias across different social groups and tasks. The curation of CEB is based on our newly proposed compositional taxonomy, which characterizes each dataset from three dimensions: bias types, social groups, and tasks. By combining the three dimensions, we develop a comprehensive evaluation strategy for the bias in LLMs. Our experiments demonstrate that the levels of bias vary across these dimensions, thereby providing guidance for the development of specific bias mitigation methods.more » « lessFree, publicly-accessible full text available April 24, 2026
-
Free, publicly-accessible full text available August 3, 2026
-
Functional Magnetic Resonance Image (fMRI) is commonly employed to study human brain activity, since it offers insight into the relationship between functional fluctuations and human behavior. To enhance analysis and comprehension of brain activity, Graph Neural Networks (GNNs) have been widely applied to the analysis of functional connectivities (FC) derived from fMRI data, due to their ability to capture the synergistic interactions among brain regions. However, in the human brain, performing complex tasks typically involves the activation of certain pathways, which could be represented as paths across graphs. As such, conventional GNNs struggle to learn from these pathways due to the long-range dependencies of multiple pathways. To address these challenges, we introduce a novel framework BrainMAP to learn multiple pathways in brain networks. BrainMAP leverages sequential models to identify long-range correlations among sequentialized brain regions and incorporates an aggregation module based on Mixture of Experts (MoE) to learn from multiple pathways. Our comprehensive experiments highlight BrainMAP's superior performance. Furthermore, our framework enables explanatory analyses of crucial brain regions involved in tasks.more » « lessFree, publicly-accessible full text available April 11, 2026
-
KG-CF: Knowledge Graph Completion with Context Filtering under the Guidance of Large Language ModelsLarge Language Models (LLMs) have shown impressive performance in various tasks, including knowledge graph completion (KGC). However, current studies mostly apply LLMs to classification tasks, like identifying missing triplets, rather than ranking-based tasks, where the model ranks candidate entities based on plausibility. This focus limits the practical use of LLMs in KGC, as real-world applications prioritize highly plausible triplets. Additionally, while graph paths can help infer the existence of missing triplets and improve completion accuracy, they often contain redundant information. To address these issues, we propose KG-CF, a framework tailored for ranking-based KGC tasks. KG-CF leverages LLMs’ reasoning abilities to filter out irrelevant contexts, achieving superior results on real-world datasets.more » « less
An official website of the United States government

Full Text Available